
Abstract — This paper reports the convergence property of 

a stable iterative approach to solving a 3D time-harmonic full 

wave electromagnetic problem based on the vector wave 

propagation equations. This approach utilizes a time domain 

update scheme of the vector wave equation FDTD analysis for 

solving a steady state fixed point in the time-harmonic domain. 

Numerical experiments show that the formulation has an 

asymptotical convergence property for large-scale EM 

problems. 

I. INTRODUCTION 

A numerical electromagnetic analysis such as edge-

based FEM is an efficient tool to investigate arbitrarily 

shaped 3D complex structures. Large null space of the 

coefficient matrix, however, causes difficulties in 

convergence when iterative algorithms are applied [1]. 

Various approaches have been studied to improve this slow 

convergence issue by preconditioning the original finite 

element matrix [1][2][3]. The large-scale electromagnetic 

problem, however, still suffers from the convergence 

difficulties due to the 'low frequency errors' [4] and needs 

more effective algorithms. Recently a new iteration scheme 

for the FDFD formulation was proposed and proved to 

converge to a fixed point under some conditions [5][6]. This 

approach utilizes a time domain update scheme of the 

FDTD algorithm. On following this approach, we 

investigated a stable iterative algorithm for a time-harmonic 

3D full wave analysis which is based on the vector wave 

equation FDTD [7].  

II. FORMULATION 

A time-harmonic boundary value problem for the vector 

wave equation that governs electromagnetic phenomena is 

expressed by the electric field intensity vector E as follows: 
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where   is a finite three dimensional domain with a 

Diriclet-type boundary d and outward normal vector n [8]. 

 ,,,,, r0r0  and J are the magnetic permeability of 

free space, relative magnetic permeability, the electric 

permittivity of free space, relative electric permittivity, 

conductivity, angle frequency and the impressed volume 

electric current density, respectively. Using a central 

difference approximation for space with Cartesian grids, the 

following finite different system is obtained: 

fx jM                                   (3) 

where M is the finite difference matrix, x denotes the vector 

of the unknown expansion coefficients of E and f is the 

discretized term associated with the imposed source current 

J [8]. The electric field Ez is, for example, expressed by the 

surrounding field variables as follows: 
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This linear system is ill-conditioned when the degree of 

freedom becomes large. Therefore special measures are 

required for quick convergence by iterative solvers.  

III. ITERATION SCHEME 

Converting the expression (4) into the time domain, the 

following update scheme is obtained [7]: 
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Suppose that the iteration process achieves a steady-state in 

the frequency domain, E
n+1

z, E
n

z and E
n-1

z can be expressed 

as 
)()( , f
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, respectively. It is 

easily shown that 
f

zE satisfy (4) when 0t  [5]. 
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IV. NUMERICAL EXAMPLE 

Numerical examples are performed to investigate the 

convergence property of this iterative wave equation-based 

formulation. The following first order absorbing boundary 

condition [8] is imposed on the outer boundary: 
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, i=x, y, z.                                 (6) 

TABLE I 

SIMULATION STATISTICS 

Number of elements 3,375,000 

Number of freedom 9,990,450 

Absorbing boundary 

condition 

1st order absorbing boundary 

condition 

Element type Cartesian grid  

Frequency 500(MHz) 

Relative Permittivity 4.7 (Dielectric material) 

Conductivity(S/m) 5.76e+7 (Metal) 

A. Model 

A parallel plate resonator shown in Fig. 1 is analyzed with 

a voltage excitation at the origin in Z-direction. Simulation 

statistics of the benchmark analysis is listed in Table I. Field 

variables 
)(,, nkji

zE are observed on the same plane of the 

input stimulus at (X,Y,Z)=(10,10,0)  and (100,100,0). 

B. Convergence Property 

Fig. 2 shows the convergence profiles at the observation 

points. After some iterations we can observe the asymptotic 

convergence of the field intensities to each fixed point.  

 
Fig. 1. Benchmark model   

This property is preserved when the input frequency is 

changed to 1GHz. The same results are obtained in some 

other benchmark model cases. 

C. Discussion 

In full wave numerical electromagnetics, a large-scale 

problem has intrinsic convergence difficulties [3][4], 

especially with more than 1,000,000 unknowns. This 

approach based on the time-domain update scheme, 

however, showed an asymptotic but stable convergence 

profile with the problem of nearly 10,000,000 unknowns. 

Since this scheme is based on an ever heavily studied time 

domain update scheme, the robustness and stability can be 

expected for the problems consists of arbitrarily shaped 

complex electromagnetic structures. By taking average of 

the data sequence, the steady-state field values can be 

estimated and utilized as an initial guess for another 

iteration algorithm. We now try to apply this scheme to 

more complex electromagnetic structures. 

 
Fig. 2. Convergence profiles (Top: at (10,10,0), Bottom: at(100,100,0))  
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